Independence of and interactions between GABA-, glutamate-, and acetylcholine-activated Cl conductances in Aplysia neurons.

نویسندگان

  • J Kehoe
  • C Vulfius
چکیده

In certain Aplysia neurons, glutamate, GABA, and acetylcholine (ACh) all elicit desensitizing Cl-dependent responses. This fact and the finding that the glutamate and GABA responses "cross-desensitize" led to the suggestion (Swann and Carpenter, 1975; King and Carpenter, 1987) that the responses to these transmitters were mediated by the same receptor-channel complex. This hypothesis is incompatible with the demonstration given here that the GABA- and glutamate-gated channels are clearly distinct; the GABA channel, but not the glutamate channel, shows outward rectification (Matsumoto, 1982; King and Carpenter, 1987, 1989) and is selectively blocked by intracellular sulfate. Exploiting these distinctive characteristics and the independent expression of the receptors in some cells, we have been able to reevaluate the so-called cross-desensitization by analyzing the ability of GABA, glutamate, and other agonists to interact with each of the receptor molecules. The cross-desensitization was found to be exclusively attributable to the ability of GABA to interact with the glutamate receptor (Oyama et al., 1990). The GABA receptor is unaffected by glutamate. Nevertheless, in cells expressing both receptors, glutamate can reduce the GABA response by auto-desensitizing the part of the response that is mediated by the glutamate receptor. No interactions were observed between ACh-induced responses and either of the responses elicited by the amino acids. The invertebrate glutamate-gated Cl channels that have been cloned resemble the vertebrate glycine receptor (Vassilatis et al., 1997). Our pharmacological evaluation of the molluscan glutamate receptor points in the same direction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

Snake alpha-toxin effects on cholinergic and noncholinergic responses of Aplysia californica neurons.

The effects of alpha-toxins from Bungarus multicinctus (alpha BuTX) and Naja naja siamensis (alpha NTX) were studied on synaptic responses and on extrasynaptic responses to focally applied acetylcholine (ACh), histamine (Hm), gamma-aminobutyric acid (GABA), and glutamate (glu) in neurons of the marine mollusc, Aplysia californica. Binding of 125I-alpha BuTX to Aplysia ganglia homogenates was ph...

متن کامل

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 20 23  شماره 

صفحات  -

تاریخ انتشار 2000